大家好,今天小编关注到一个比较有意思的话题,就是关于商业分析 职业规划的问题,于是小编就整理了1个相关介绍商业分析 职业规划的解答,让我们一起看看吧。
大数据和商业分析如果要说哪个前景好,这个问题是不用质疑的,肯定是大数据,未来的商业分析若离开了大数据,则肯定是没有前景。大数据的应用将会在未来主宰人类的各个领域的生活,纯粹的大数据是毫无意义的,但一旦被云计算,人工智能所利用数据则具备了思维能力,大数据将是智能中心,这个时候的商业分析将大部分是大数据的应用分折,举列来说市场有多大需求,供需平衡的关系将决定商业分析的方向及价值意义。没有大数据的支撑,商业分析只能是瞎子摸象。
大数据 or 商业分析的前景分析
大数据
商业分析
商业分析其中一方面也涉及统计,统计也是需要大数据的支撑的。而大量的数据***是死的,都要加上人的主观能动性的分析才会得到人们想要的答案。所以说这两者融合起来运用会增加企业的助攻,也会让企业运行得更加的顺畅。
这两者肯定是各有各的优缺点,其实题主应该想问的是接下来的5年-10年这两者谁先会发展得更加的迅速吧。不知道你是准备创业或者是就业,或者还是单纯的想问问。
如果是就业的话,我建议还是大数据前景相较于商业分析来说面更宽一些,薪资水平也会更加的高一些。毕竟跟互联网沾边的职位薪水确实是要高出不少,岗位也还蛮多的。也相当于大学选专业,你选择冷门还是热门?这都是很纠结的问题,因为我们谁也无法准确的预知未来是怎么样的。
BI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。BD大数据(Big Data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据***,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。(参见百度百科)
大数据分析与BI商业智能一定程度上可以相互融合,BI中包含一些企业内部的数据分析,大数据分析中有一种体现为BI商业智能,企业可根据不同发展阶段,使用不同方案。初期阶段通常推荐通过MDM(主数据)、BI来做数据治理分析。所谓大数据分析,顾名思义是对海量数据进行分析,多用于行业、产业、国计民生、社交网络数据,但当前对于绝大多数企业而言,应用集成、数据治理、业务整合都没有做好,甚至信息化系统还存在缺失的情况下,大数据建设对于企业来说显然是为时尚早。
BD大数据涉及的技术更庞杂一些,从4V规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value)四个方面要求:数据的***集渠道、工具更加多样;加工、存取、处理速度也更快,且海量数据要求存储模式也发生巨大的改变,其中,MPP跟Hadoop是两种典型模式,前者更方便,尤其是对于T/P级没有问题,如果数据量级更大就绕不开Hadoop了。大数据面对的数据格式:格式化、非格式化、半格式化都有,需要涉及更多技术数据处理手段,比如:语音识别、图像识别,以及一系列高级的算法。这些都要求大数据建设需要更高端的人才储备。
对于企业而言数据治理项目、建数仓,对生产、经营、管理数据进行沉淀、加工、分析,在数据量的逐渐增多之后,迁移到基于MPP技术(比如:GreenPlum)数据存储分析平台上,这是一个最佳路径。毕竟,企业内部的生产、经营、管理数据的价值密度,比不同渠道***集过来的所谓大数据价值密度要高很多,做BI或者准大数据项目建设的投入产出比大数据项目建设也要高很多、成功率也相对较高。
至于说两者的前景,两个前景都很好,但如果对于问这个问题的朋友,我建议从数仓、数据治理、BI入手学习,然后再慢慢择机进入大数据领域,练拳不练功到老一场空,到时大数据的落地路径、工具方法、生态体系等也会更加成熟,现在仍有喧嚣没有落下来。
到此,以上就是小编对于商业分析 职业规划的问题就介绍到这了,希望介绍关于商业分析 职业规划的1点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.freeconferencesource.com/post/19950.html